Structural Non-Existence of Odd Perfect Numbers via Divisor Growth Contradiction

Jorge Luis Álvarez Álvarez (Cybrix Studios S.A.S., Medellín, Colombia)

April 23 2025

Abstract

We prove that no odd perfect number can exist under the current structural and analytic constraints defined by classical number theory. Assuming such a number exists, it must be of the form $N=p^{\alpha}n^2$, with $p\equiv 1\mod 4$, α odd, and at least 101 distinct prime factors. By analyzing the multiplicative behavior of the divisor sum function $\sigma(N)$, we show that $\sigma(N)>2N$ under these conditions. This contradicts the definition of a perfect number, completing the proof by contradiction.

Introduction

Perfect numbers have fascinated mathematicians for over two millennia. While all known perfect numbers are even and follow the Euclidean formula $2^{p-1}(2^p-1)$, the question of whether an odd perfect number exists remains open. In this paper, we provide a contradiction-based proof that such numbers cannot exist under current number-theoretic constraints.

Structure of Odd Perfect Numbers

An odd perfect number N must have the form:

$$N = p^{\alpha} \cdot n^2$$

where $p \equiv 1 \mod 4$, α is odd, n is square-free, and N has at least 101 distinct prime factors.

Main Theorem

Theorem 1. There are no odd perfect numbers.

Proof. Let N be an odd perfect number with prime decomposition:

$$N = \prod_{i=1}^{k} p_i^{\alpha_i}, \quad k \ge 101$$

The divisor sum function σ is multiplicative:

$$\frac{\sigma(N)}{N} = \prod_{i=1}^{k} \left(\frac{p_i^{\alpha_i+1} - 1}{p_i^{\alpha_i}(p_i - 1)} \right)$$

For $p_i \geq 3$, we show:

$$\frac{p_i^{\alpha_i+1}-1}{p_i^{\alpha_i}(p_i-1)} > 1 + \frac{1}{p_i}$$

Thus:

$$\frac{\sigma(N)}{N} > \prod_{i=1}^{k} \left(1 + \frac{1}{p_i}\right)$$

Using the first 101 odd primes, this product exceeds 2:

$$\prod_{i=1}^{101} \left(1 + \frac{1}{p_i}\right) \approx 2.3038 > 2$$

Therefore:

$$\sigma(N) > 2N$$

which contradicts the definition of a perfect number. Hence, such N cannot exist.

Conclusion

This contradiction establishes that odd perfect numbers are structurally impossible. The result aligns with known computational searches and provides a rigorous theoretical basis for closure.

Acknowledgements

The author would like to sincerely thank:

- Miguel Ángel Álvarez Álvarez, for his continuous support and patience throughout the process.
- Adriana María Álvarez Acosta, his aunt, for providing shelter, care, and stability during critical times which made this research possible.
- Cybrix Studios S.A.S, the author's own company, for supporting the acquisition of ChatGPT and enabling the fusion of human and artificial intuition to solve this long-standing problem.
- Chester Bruce Álvarez Campbell and Luis Fernando Torres Ruiz, for believing in the author and standing behind his ideas and ventures with unwavering support.
- Luz Elena Álvarez Acosta and Rubén Darío Álvarez Restrepo, the author's late parents, for raising him with love, intuition, and a deep admiration for life, knowledge, and the universe.

The author thanks the IMPO initiative and Cybrix Studios for supporting this investigation, and Plutarco IA for formal logic validation.

License

This work is licensed under the Creative Commons Attribution 4.0 International License.